Skip to content

Files

seedname.win

INPUT. The master input file; contains the specification of the system and any parameters for the run. For a description of input parameters, see Chapter 2{reference-type="ref" reference="chap:parameters"}; for examples, see Section 10.1 and the wannier90 Tutorial.

Units

The following are the dimensional quantities that are specified in the master input file:

  • Direct lattice vectors

  • Positions (of atomic or projection) centres in real space

  • Energy windows

  • Positions of k-points in reciprocal space

  • Convergence thresholds for the minimisation of \(\Omega\)

  • zona (see Section 3.1{reference-type="ref" reference="sec:proj"})

  • wannier_plot_cube: cut-off radius for plotting WF in Gaussian cube format

Notes:

  • The units (either ang (default) or bohr) in which the lattice vectors, atomic positions or projection centres are given can be set in the first line of the blocks unit_cell_cart, atoms_cart and projections, respectively, in seedname.win.

  • Energy is always in eV.

  • Convergence thresholds are always in Å\(^{2}\)

  • Positions of k-points are always in crystallographic coordinates relative to the reciprocal lattice vectors.

  • zona is always in reciprocal Angstrom (Å\(^{-1}\))

  • The keyword length_unit may be set to ang (default) or bohr, in order to set the units in which the quantities in the output file seedname.wout are written.

  • wannier_plot_radius is in Angstrom

The reciprocal lattice vectors \(\{\mathbf{B}_{1},\mathbf{B}_{2},\mathbf{B}_{3}\}\) are defined in terms of the direct lattice vectors \(\{\mathbf{A}_{1},\mathbf{A}_{2},\mathbf{A}_{3}\}\) by the equation

\[\mathbf{B}_{1} = \frac{2\pi}{\Omega}\mathbf{A}_{2}\times\mathbf{A}_{3} \ \ \ \mathrm{etc.},\]

where the cell volume is \(V=\mathbf{A}_{1}\cdot(\mathbf{A}_{2}\times\mathbf{A}_{3})\).

seedname.mmn

INPUT. Written by the underlying electronic structure code. See Chapter 5 for details.

seedname.amn

INPUT. Written by the underlying electronic structure code. See Chapter 5 for details.

seedname.dmn

INPUT. Read if site_symmetry = .true. (symmetry-adapted mode). Written by the underlying electronic structure code. See Chapter 5 for details.

seedname.eig

INPUT. Written by the underlying electronic structure code. See Chapter 5 for details.

seedname.nnkp

OUTPUT. Written by wannier90 when postproc_setup=.TRUE. (or, alternatively, when wannier90 is run with the -pp command-line option). See Chapter 5{reference-type="ref" reference="ch:wann-pp"} for details.

seedname.wout

OUTPUT. The master output file. Here we give a description of the main features of the output. The verbosity of the output is controlled by the input parameter iprint. The higher the value, the more detail is given in the output file. The default value is 1, which prints minimal information.

The header provides some basic information about wannier90, the authors, the code version and release, and the execution time of the current run. The header looks like the following different (the string might slightly change across different versions):

             +---------------------------------------------------+
             |                                                   |
             |                   WANNIER90                       |
             |                                                   |
             +---------------------------------------------------+
             |                                                   |
             |        Welcome to the Maximally-Localized         |
             |        Generalized Wannier Functions code         |
             |            http://www.wannier.org                 |
             |                                                   |
             |  Wannier90 Developer Group:                       |
             |    Giovanni Pizzi    (EPFL)                       |
             |    Valerio Vitale    (Cambridge)                  |
             |    David Vanderbilt  (Rutgers University)         |
             |    Nicola Marzari    (EPFL)                       |
             |    Ivo Souza         (Universidad del Pais Vasco) |
             |    Arash A. Mostofi  (Imperial College London)    |
             |    Jonathan R. Yates (University of Oxford)       |
             |                                                   |
             |  For the full list of Wannier90 3.x authors,      |
             |  please check the code documentation and the      |
             |  README on the GitHub page of the code            |
             |                                                   |
             |                                                   |
             |  Please cite                                      |
                                       .
                                       .
             |                                                   |
             +---------------------------------------------------+
             |    Execution started on 18Dec2018 at 18:39:42     |
             +---------------------------------------------------+

System information

This part of the output file presents information that wannier90 has read or inferred from the master input file seedname.win. This includes real and reciprocal lattice vectors, atomic positions, k-points, parameters for job control, disentanglement, localisation and plotting.

                                    ------
                                    SYSTEM
                                    ------

                              Lattice Vectors (Ang)
                    a_1     3.938486   0.000000   0.000000
                    a_2     0.000000   3.938486   0.000000
                    a_3     0.000000   0.000000   3.938486

                   Unit Cell Volume:      61.09251  (Ang^3)

                        Reciprocal-Space Vectors (Ang^-1)
                    b_1     1.595330   0.000000   0.000000
                    b_2     0.000000   1.595330   0.000000
                    b_3     0.000000   0.000000   1.595330

 *----------------------------------------------------------------------------*
 |   Site       Fractional Coordinate          Cartesian Coordinate (Ang)     |
 +----------------------------------------------------------------------------+
 | Ba   1   0.00000   0.00000   0.00000   |    0.00000   0.00000   0.00000    |
 | Ti   1   0.50000   0.50000   0.50000   |    1.96924   1.96924   1.96924    |
                                          .
                                          . 
 *----------------------------------------------------------------------------*

                                ------------
                                K-POINT GRID
                                ------------

             Grid size =  4 x  4 x  4      Total points =   64

 *---------------------------------- MAIN ------------------------------------*
 |  Number of Wannier Functions               :                 9             |
 |  Number of input Bloch states              :                 9             |
 |  Output verbosity (1=low, 5=high)          :                 1             |
 |  Length Unit                               :               Ang             |
 |  Post-processing setup (write *.nnkp)      :                 F             |
                                              .
                                              .
 *----------------------------------------------------------------------------*

Nearest-neighbour k-points

This part of the output files provides information on the \(\mathrm{b}\)-vectors and weights chosen to satisfy the condition of Eq. [eq:B1].

 *---------------------------------- K-MESH ----------------------------------*
 +----------------------------------------------------------------------------+
 |                    Distance to Nearest-Neighbour Shells                    |
 |                    ------------------------------------                    |
 |          Shell             Distance (Ang^-1)          Multiplicity         |
 |          -----             -----------------          ------------         |
 |             1                   0.398833                      6            |
 |             2                   0.564034                     12            |
                                       .
                                       .
 +----------------------------------------------------------------------------+
 | The b-vectors are chosen automatically                                     |
 | The following shells are used:   1                                         |
 +----------------------------------------------------------------------------+
 |                        Shell   # Nearest-Neighbours                        |
 |                        -----   --------------------                        |
 |                          1               6                                 |
 +----------------------------------------------------------------------------+
 | Completeness relation is fully satisfied [Eq. (B1), PRB 56, 12847 (1997)]  |
 +----------------------------------------------------------------------------+

Disentanglement

Then (if required) comes the part where \(\Omega_{\mathrm{I}}\) is minimised to disentangle the optimally-connected subspace of states for the localisation procedure in the next step.

First, a summary of the energy windows that are being used is given:

 *------------------------------- DISENTANGLE --------------------------------*
 +----------------------------------------------------------------------------+
 |                              Energy  Windows                               |
 |                              ---------------                               |
 |                   Outer:    2.81739  to   38.00000  (eV)                   |
 |                   Inner:    2.81739  to   13.00000  (eV)                   |
 +----------------------------------------------------------------------------+

Then, each step of the iterative minimisation of \(\Omega_{\mathrm{I}}\) is reported.

                   Extraction of optimally-connected subspace                  
                   ------------------------------------------                  
 +---------------------------------------------------------------------+<-- DIS
 |  Iter     Omega_I(i-1)      Omega_I(i)      Delta (frac.)    Time   |<-- DIS
 +---------------------------------------------------------------------+<-- DIS
       1       3.82493590       3.66268867       4.430E-02      0.36    <-- DIS
       2       3.66268867       3.66268867       6.911E-15      0.37    <-- DIS
                                       .
                                       .

             <<<      Delta < 1.000E-10  over  3 iterations     >>>
             <<< Disentanglement convergence criteria satisfied >>>

        Final Omega_I     3.66268867 (Ang^2)

 +----------------------------------------------------------------------------+

The first column gives the iteration number. For a description of the minimisation procedure and expressions for \(\Omega_{\mathrm{I}}^{(i)}\), see the original paper 1. The procedure is considered to be converged when the fractional difference between \(\Omega_{\mathrm{I}}^{(i)}\) and \(\Omega_{\mathrm{I}}^{(i-1)}\) is less than dis_conv_tol over dis_conv_window iterations. The final column gives a running account of the wall time (in seconds) so far. Note that at the end of each line of output, there are the characters "<– DIS". This enables fast searching of the output using, for example, the Unix command grep:

my_shell> grep DIS wannier.wout | less

Wannierisation

The next part of the output file provides information on the minimisation of \(\widetilde{\Omega}\). At each iteration, the centre and spread of each WF is reported.

*------------------------------- WANNIERISE ---------------------------------*
 +--------------------------------------------------------------------+<-- CONV
 | Iter  Delta Spread     RMS Gradient      Spread (Ang^2)      Time  |<-- CONV
 +--------------------------------------------------------------------+<-- CONV

 ------------------------------------------------------------------------------
 Initial State
  WF centre and spread    1  (  0.000000,  1.969243,  1.969243 )     1.52435832
  WF centre and spread    2  (  0.000000,  1.969243,  1.969243 )     1.16120620
                                      .
                                      .
      0     0.126E+02     0.0000000000       12.6297685260       0.29  <-- CONV
        O_D=      0.0000000 O_OD=      0.1491718 O_TOT=     12.6297685 <-- SPRD
 ------------------------------------------------------------------------------
 Cycle:      1
  WF centre and spread    1  (  0.000000,  1.969243,  1.969243 )     1.52414024
  WF centre and spread    2  (  0.000000,  1.969243,  1.969243 )     1.16059775
                                      .
                                      .
  Sum of centres and spreads ( 11.815458, 11.815458, 11.815458 )    12.62663472

      1    -0.313E-02     0.0697660962       12.6266347170       0.34  <-- CONV
        O_D=      0.0000000 O_OD=      0.1460380 O_TOT=     12.6266347 <-- SPRD
 Delta: O_D= -0.4530841E-18 O_OD= -0.3133809E-02 O_TOT= -0.3133809E-02 <-- DLTA
 ------------------------------------------------------------------------------
 Cycle:      2
  WF centre and spread    1  (  0.000000,  1.969243,  1.969243 )     1.52414866
  WF centre and spread    2  (  0.000000,  1.969243,  1.969243 )     1.16052405
                                      .
                                      .
   Sum of centres and spreads ( 11.815458, 11.815458, 11.815458 )    12.62646411

      2    -0.171E-03     0.0188848262       12.6264641055       0.38  <-- CONV
        O_D=      0.0000000 O_OD=      0.1458674 O_TOT=     12.6264641 <-- SPRD
 Delta: O_D= -0.2847260E-18 O_OD= -0.1706115E-03 O_TOT= -0.1706115E-03 <-- DLTA
 ------------------------------------------------------------------------------
                                      .
                                      .
 ------------------------------------------------------------------------------
 Final State
  WF centre and spread    1  (  0.000000,  1.969243,  1.969243 )     1.52416618
  WF centre and spread    2  (  0.000000,  1.969243,  1.969243 )     1.16048545
                                      .
                                      .
  Sum of centres and spreads ( 11.815458, 11.815458, 11.815458 )    12.62645344

         Spreads (Ang^2)       Omega I      =    12.480596753
        ================       Omega D      =     0.000000000
                               Omega OD     =     0.145856689
    Final Spread (Ang^2)       Omega Total  =    12.626453441
 ------------------------------------------------------------------------------

It looks quite complicated, but things look more simple if one uses grep:

my_shell> grep CONV wannier.wout

gives

 +--------------------------------------------------------------------+<-- CONV
 | Iter  Delta Spread     RMS Gradient      Spread (Ang^2)      Time  |<-- CONV
 +--------------------------------------------------------------------+<-- CONV
      0     0.126E+02     0.0000000000       12.6297685260       0.29  <-- CONV
      1    -0.313E-02     0.0697660962       12.6266347170       0.34  <-- CONV
                                                   .
                                                   .
     50     0.000E+00     0.0000000694       12.6264534413       2.14  <-- CONV

The first column is the iteration number, the second is the change in \(\Omega\) from the previous iteration, the third is the root-mean-squared gradient of \(\Omega\) with respect to variations in the unitary matrices \(\mathbf{U}^{(\mathbf{k})}\), and the last is the time taken (in seconds). Depending on the input parameters used, the procedure either runs for num_iter iterations, or a convergence criterion is applied on \(\Omega\). See Section 2.8{reference-type="ref" reference="sec:wann_params"} for details.

Similarly, the command

my_shell> grep SPRD wannier.wout

gives

        O_D=      0.0000000 O_OD=      0.1491718 O_TOT=     12.6297685 <-- SPRD
        O_D=      0.0000000 O_OD=      0.1460380 O_TOT=     12.6266347 <-- SPRD
                                            .
                                            .
        O_D=      0.0000000 O_OD=      0.1458567 O_TOT=     12.6264534 <-- SPRD

which, for each iteration, reports the value of the diagonal and off-diagonal parts of the non-gauge-invariant spread, as well as the total spread, respectively. Recall from Section 1 that \(\Omega = \Omega_{\mathrm{I}}+ \Omega_{\mathrm{D}} + \Omega_{\mathrm{OD}}\).

Wannierisation with selective localization and constrained centres

For full details of the selectively localised Wannier function (SLWF) method, the reader is referred to Ref. 2. When using the SLWF method, only a few things change in the output file and in general the same principles described above will apply. In particular, when minimising the spread with respect to the degrees of freedom of only a subset of functions, it is not possible to cast the total spread functional \(\Omega\) as a sum of a gauge-invariant part and a gauge-dependent part. Instead, one has \(\Omega^{'} = \Omega_{\mathrm{IOD}} + \Omega_{\mathrm{D}}\), where \(\(\Omega^{'} = \sum_{n=1}^{J'<J} \left[\langle r^2 \rangle_n - \overline{\mathbf{r}}_{n}^{2}\right]\)\) and \(\(\Omega_{\mathrm{IOD}} = \sum_{n=1}^{J'<J} \left[\langle r^2_n \rangle- \sum_{\mathbf{R}} \vert\langle\mathbf{R}n\vert \mathbf{r} \vert n\mathbf{R}\rangle\vert^2 \right].\)\) The total number of Wannier functions is \(J\), whereas \(J'\) is the number functions to be selectively localized (so-called objective WFs). The information on the number of functions which are going to be selectively localized (Number of Objective Wannier Functions) is given in the MAIN section of the output file:

 *---------------------------------- MAIN ------------------------------------*
 |  Number of Wannier Functions               :                 4             |
 |  Number of Objective Wannier Functions     :                 1             |
 |  Number of input Bloch states              :                 4             |

Whether or not the selective localization procedure has been switched on is reported in the WANNIERISE section as

 |  Perform selective localization            :                 T             |

The next part of the output file provides information on the minimisation of the modified spread functional:

 *------------------------------- WANNIERISE ---------------------------------*
 +--------------------------------------------------------------------+<-- CONV
 | Iter  Delta Spread     RMS Gradient      Spread (Ang^2)      Time  |<-- CONV
 +--------------------------------------------------------------------+<-- CONV

 ------------------------------------------------------------------------------
 Initial State
  WF centre and spread    1  ( -0.857524,  0.857524,  0.857524 )     1.80463310
  WF centre and spread    2  (  0.857524, -0.857524,  0.857524 )     1.80463311
  WF centre and spread    3  (  0.857524,  0.857524, -0.857524 )     1.80463311
  WF centre and spread    4  ( -0.857524, -0.857524, -0.857524 )     1.80463311
  Sum of centres and spreads ( -0.000000, -0.000000,  0.000000 )     7.21853243

      0    -0.317E+01     0.0000000000       -3.1653368719       0.00  <-- CONV
       O_D=      0.0000000 O_IOD=     -3.1653369 O_TOT=     -3.1653369 <-- SPRD
 ------------------------------------------------------------------------------
 Cycle:      1
  WF centre and spread    1  ( -0.853260,  0.853260,  0.853260 )     1.70201498
  WF centre and spread    2  (  0.857352, -0.857352,  0.862454 )     1.84658331
  WF centre and spread    3  (  0.857352,  0.862454, -0.857352 )     1.84658331
  WF centre and spread    4  ( -0.862454, -0.857352, -0.857352 )     1.84658331
  Sum of centres and spreads ( -0.001010,  0.001010,  0.001010 )     7.24176492

      1    -0.884E-01     0.2093698260       -3.2536918930       0.00  <-- CONV
       O_IOD=     -3.2536919 O_D=      0.0000000 O_TOT=     -3.2536919 <-- SPRD
Delta: O_IOD= -0.1245020E+00 O_D=  0.0000000E+00 O_TOT= -0.8835502E-01 <-- DLTA
 ------------------------------------------------------------------------------
                                      .
                                      .
 ------------------------------------------------------------------------------
 Final State
  WF centre and spread    1  ( -0.890189,  0.890189,  0.890189 )     1.42375495
  WF centre and spread    2  (  0.895973, -0.895973,  0.917426 )     2.14313664
  WF centre and spread    3  (  0.895973,  0.917426, -0.895973 )     2.14313664
  WF centre and spread    4  ( -0.917426, -0.895973, -0.895973 )     2.14313664
  Sum of centres and spreads ( -0.015669,  0.015669,  0.015669 )     7.85316486

         Spreads (Ang^2)       Omega IOD    =     1.423371553
        ================       Omega D      =     0.000383395
                               Omega Rest   =     9.276919811
    Final Spread (Ang^2)       Omega Total  =     1.423754947
 ------------------------------------------------------------------------------

When comparing the output from an SLWF calculation with a standard wannierisation (see Sec. 8.7.5{reference-type="ref" reference="sec:files-wannierisation"}), the only differences are in the definition of the spread functional. Hence, during the minimization O_OD is replaced by O_IOD and O_TOT now reflects the fact that the new total spread functional is \(\Omega^{'}\). The part on the final state has one more item of information: the value of the difference between the global spread functional and the new spread functional given by Omega Rest \(\(\Omega_{R} = \sum_{n=1}^{J-J'} \left[\langle r^2 \rangle_n - \overline{\mathbf{r}}_{n}^{2} \right]\)\)

If adding centre-constraints to the SLWFs, you will find the information about the centres of the original projections and the desired centres in the SYSTEM section

 *----------------------------------------------------------------------------*
 | Wannier#        Original Centres              Constrained centres          |
 +----------------------------------------------------------------------------+
 |    1     0.25000   0.25000   0.25000   |    0.00000   0.00000   0.00000    |
 *----------------------------------------------------------------------------*

As before one can check that the selective localization with constraints is being used by looking at the WANNIERISE section:

 |  Perform selective localization            :                 T             |
 |  Use constrains in selective localization  :                 T             |
 |  Value of the Lagrange multiplier          :         0.100E+01             |
 *----------------------------------------------------------------------------*

which also gives the selected value for the Lagrange multiplier. The output file for the minimisation section is modified as follows: both O_IOD and O_TOT now take into account the factors coming from the new term in the functional due to the constraints, which are implemented by adding the following penalty functional to the spread functional, \(\(\lambda_c \sum_{n=1}^{J'} \left(\overline{\mathbf{r}}_n - \mathbf{r}_{0n} \right)^2,\)\) where \(\mathbf{r}_{0n}\) is the desired centre for the \(n^{\text{th}}\) Wannier function, see Ref. 2 for details. The layout of the output file at each iteration is unchanged.

      1    -0.884E-01     0.2093698260       -3.2536918930       0.00  <-- CONV

As regarding the final state, the only addition is the information on the value of the penalty functional associated with the constraints (Penalty func), which should be zero if the final centres of the Wannier functions are at the target centres:

 Final State
  WF centre and spread    1  ( -1.412902,  1.412902,  1.412902 )     1.63408756
  WF centre and spread    2  (  1.239678, -1.239678,  1.074012 )     2.74801593
  WF centre and spread    3  (  1.239678,  1.074012, -1.239678 )     2.74801592
  WF centre and spread    4  ( -1.074012, -1.239678, -1.239678 )     2.74801592
  Sum of centres and spreads ( -0.007559,  0.007559,  0.007559 )     9.87813534

         Spreads (Ang^2)       Omega IOD_C   =    -4.261222001
        ================       Omega D       =     0.000000000
                               Omega Rest    =     5.616913337
                               Penalty func  =     0.000000000
    Final Spread (Ang^2)       Omega Total_C =    -4.261222001
 ------------------------------------------------------------------------------

Plotting

After WF have been localised, wannier90 enters its plotting routines (if required). For example, if you have specified an interpolated bandstucture:

 *---------------------------------------------------------------------------*
 |                               PLOTTING                                    |
 *---------------------------------------------------------------------------*

 Calculating interpolated band-structure

Summary timings

At the very end of the run, a summary of the time taken for various parts of the calculation is given. The level of detail is controlled by the timing_level input parameter (set to 1 by default).

 *===========================================================================*
 |                             TIMING INFORMATION                            |
 *===========================================================================*
 |    Tag                                                Ncalls      Time (s)|
 |---------------------------------------------------------------------------|
 |kmesh: get                                        :         1         0.212|
 |overlap: read                                     :         1         0.060|
 |wann: main                                        :         1         1.860|
 |plot: main                                        :         1         0.168|
 *---------------------------------------------------------------------------*

 All done: wannier90 exiting

seedname.chk

INPUT/OUTPUT. Information required to restart the calculation or enter the plotting phase. If we have used disentanglement this file also contains the rectangular matrices \(\bf{U}^{{\rm dis}({\bf k})}\).

seedname.r2mn

OUTPUT. Written if \(\verb#write_r2mn#=\verb#true#\). The matrix elements \(\langle m|r^2|n\rangle\) (where \(m\) and \(n\) refer to MLWF)

seedname_band.dat

OUTPUT. Written if bands_plot=.TRUE.; The raw data for the interpolated band structure.

seedname_band.gnu

OUTPUT. Written if bands_plot=.TRUE. and bands_plot_format=gnuplot; A gnuplot script to plot the interpolated band structure.

seedname_band.agr

OUTPUT. Written if bands_plot=.TRUE. and bands_plot_format=xmgrace; A grace file to plot the interpolated band structure.

seedname_band.kpt

OUTPUT. Written if bands_plot=.TRUE.; The k-points used for the interpolated band structure, in units of the reciprocal lattice vectors. This file can be used to generate a comparison band structure from a first-principles code.

seedname.bxsf

OUTPUT. Written if fermi_surface_plot=.TRUE.; A Fermi surface plot file suitable for plotting with XCrySDen.

seedname_w.xsf

OUTPUT. Written if wannier_plot=.TRUE. and wannier_plot_format=xcrysden. Contains the w\(^{\mathrm{th}}\) WF in real space in a format suitable for plotting with XCrySDen or VMD, for example.

seedname_w.cube

OUTPUT. Written if wannier_plot=.TRUE. and wannier_plot_format=cube. Contains the w\(^{\mathrm{th}}\) WF in real space in Gaussian cube format, suitable for plotting in XCrySDen, VMD, gopenmol etc.

UNKp.s

INPUT. Read if wannier_plot=.TRUE. and used to plot the MLWF. Read if transport_mode=lcr and tran_read_ht=.FALSE. for use in automated lcr transport calculations.

The periodic part of the Bloch states represented on a regular real space grid, indexed by k-point p (from 1 to num_kpts) and spin s ('1' for 'up', '2' for 'down').

The name of the wavefunction file is assumed to have the form:

    write(wfnname,200) p,spin
200 format ('UNK',i5.5,'.',i1)

The first line of each file should contain 5 integers: the number of grid points in each direction (ngx, ngy and ngz), the k-point number ik and the total number of bands num_band in the file. The full file will be read by wannier90 as:

read(file_unit) ngx,ngy,ngz,ik,nbnd  
do loop_b=1,num_bands
  read(file_unit) (r_wvfn(nx,loop_b),nx=1,ngx*ngy*ngz)
end do

If spinors=true then s='NC', and the name of the wavefunction file is assumed to have the form:

    write(wfnname,200) p
200 format ('UNK',i5.5,'.NC')

and the file will be read by wannier90 as:

read(file_unit) ngx,ngy,ngz,ik,nbnd  
do loop_b=1,num_bands
   read(file_unit) (r_wvfn_nc(nx,loop_b,1),nx=1,ngx*ngy*ngz) ! up-spinor
   read(file_unit) (r_wvfn_nc(nx,loop_b,2),nx=1,ngx*ngy*ngz) ! down-spinor
end do

All UNK files can be in formatted or unformatted style, this is controlled by the logical keyword wvfn_formatted.

seedname_centres.xyz

OUTPUT. Written if write_xyz=.TRUE.; xyz format atomic structure file suitable for viewing with your favourite visualiser (jmol, gopenmol, vmd, etc.).

seedname_hr.dat

OUTPUT. Written if write_hr=.TRUE.. The first line gives the date and time at which the file was created. The second line states the number of Wannier functions num_wann. The third line gives the number of Wigner-Seitz grid-points nrpts. The next block of nrpts integers gives the degeneracy of each Wigner-Seitz grid point, with 15 entries per line. Finally, the remaining num_wann\(^2 \times\) nrpts lines each contain, respectively, the components of the vector \(\mathbf{R}\) in terms of the lattice vectors \(\{\mathbf{A}_{i}\}\), the indices \(m\) and \(n\), and the real and imaginary parts of the Hamiltonian matrix element \(H_{mn}^{(\mathbf{R})}\) in the WF basis, e.g.,

 Created on 24May2007 at 23:32:09                            
        20
        17
    4   1   2    1    4    1    1    2    1    4    6    1    1   1   2
    1   2
    0   0  -2    1    1   -0.001013    0.000000
    0   0  -2    2    1    0.000270    0.000000
    0   0  -2    3    1   -0.000055    0.000000
    0   0  -2    4    1    0.000093    0.000000
    0   0  -2    5    1   -0.000055    0.000000
    .
    .
    .

seedname_r.dat

OUTPUT. Written if \(\verb#write_rmn#=\verb#true#\). The matrix elements \(\langle m\mathbf{0}|\mathbf{r}|n\mathbf{R}\rangle\) (where \(n\mathbf{R}\) refers to MLWF \(n\) in unit cell \(\mathbf{R}\)). The first line gives the date and time at which the file was created. The second line states the number of Wannier functions num_wann. The third line states the number of \(\mathbf{R}\) vectors nrpts. Similar to the case of the Hamiltonian matrix above, the remaining num_wann\(^2 \times\) nrpts lines each contain, respectively, the components of the vector \(\mathbf{R}\) in terms of the lattice vectors \(\{\mathbf{A}_{i}\}\), the indices \(m\) and \(n\), and the real and imaginary parts of the position matrix element in the WF basis.

seedname_tb.dat

OUTPUT. Written if write_tb=.TRUE.. This file is essentially a combination of seedname_hr.dat and seedname_r.dat, plus lattice vectors. The first line gives the date and time at which the file was created. The second to fourth lines are the lattice vectors in Angstrom unit.

 written on 27Jan2020 at 18:08:42 
  -1.8050234585004898        0.0000000000000000        1.8050234585004898     
   0.0000000000000000        1.8050234585004898        1.8050234585004898     
  -1.8050234585004898        1.8050234585004898        0.0000000000000000

The next part is the same as seedname_hr.dat. The fifth line states the number of Wannier functions num_wann. The sixth line gives the number of Wigner-Seitz grid-points nrpts. The next block of nrpts integers gives the degeneracy of each Wigner-Seitz grid point, with 15 entries per line. Then, the next num_wann\(^2 \times\) nrpts lines each contain, respectively, the components of the vector \(\mathbf{R}\) in terms of the lattice vectors \(\{\mathbf{A}_{i}\}\), the indices \(m\) and \(n\), and the real and imaginary parts of the Hamiltonian matrix element \(H_{mn}^{(\mathbf{R})}\) in the WF basis, e.g.,

           7
          93
    4    6    2    2    2    1    2    2    1    1    2    6    2    2    2
    6    2    2    4    1    1    1    4    1    1    1    1    2    1    1
    1    2    2    1    1    2    4    2    1    2    1    1    1    1    2
    1    1    1    2    1    1    1    1    2    1    2    4    2    1    1
    2    2    1    1    1    2    1    1    1    1    4    1    1    1    4
    2    2    6    2    2    2    6    2    1    1    2    2    1    2    2
    2    6    4

   -3    1    1
    1    1    0.42351556E-02 -0.95722060E-07
    2    1    0.69481480E-07 -0.20318638E-06
    3    1    0.10966508E-06 -0.13983284E-06
    .
    .
    .

Finally, the last part is the same as seedname_r.dat. The num_wann\(^2 \times\) nrpts lines each contain, respectively, the components of the vector \(\mathbf{R}\) in terms of the lattice vectors \(\{\mathbf{A}_{i}\}\), the indices \(m\) and \(n\), and the real and imaginary parts of the position matrix element in the WF basis (the float numbers in columns 3 and 4 are the real and imaginary parts for \(\langle m\mathbf{0}|\mathbf{r}_x|n\mathbf{R}\rangle\), columns 5 and 6 for \(\langle m\mathbf{0}|\mathbf{r}_y|n\mathbf{R}\rangle\), and columns 7 and 8 for \(\langle m\mathbf{0}|\mathbf{r}_z|n\mathbf{R}\rangle\)), e.g.

   -3    1    1
    1    1    0.32277552E-09  0.21174901E-08 -0.85436987E-09  0.26851510E-08  ...
    2    1   -0.18881883E-08  0.21786973E-08  0.31123076E-03  0.39228431E-08  ...
    3    1    0.31123242E-03 -0.35322230E-09  0.70867281E-09  0.10433480E-09  ...
    .
    .
    .

seedname.bvec

OUTPUT. Written if \(\verb#write_bvec#=\verb#true#\). This file contains the matrix elements of bvector and their weights. The first line gives the date and time at which the file was created. The second line states the number of k-points and the total number of neighbours for each k-point nntot. Then all the other lines contain the b-vector (x,y,z) coordinate and weigths for each k-points and each of its neighbours.

seedname_wsvec.dat

OUTPUT. Written if \(\verb#write_hr#=\verb#true#\) or \(\verb#write_rmn#=\verb#true#\) or \(\verb#write_tb#=\verb#true#\). The first line gives the date and time at which the file was created and the value of use_ws_distance. For each pair of Wannier functions (identified by the components of the vector \(\mathbf{R}\) separating their unit cells and their indices) it gives: (i) the number of lattice vectors of the periodic supercell \(\mathbf{T}\) that bring the Wannier function in \(\mathbf{R}\) back in the Wigner-Seitz cell centred on the other Wannier function and (ii) the set of superlattice vectors \(\mathbf{T}\) to make this transformation. These superlattice vectors \(\mathbf{T}\) should be added to the \(\mathbf{R}\) vector to obtain the correct centre of the Wannier function that underlies a given matrix element (e.g. the Hamiltonian matrix elements in seedname_hr.dat) in order to correctly interpolate in reciprocal space.

## written on 20Sep2016 at 18:12:37  with use_ws_distance=.true.
    0    0    0    1    1
    1
    0    0    0
    0    0    0    1    2
    1
    0    0    0
    0    0    0    1    3
    1
    0    0    0
    0    0    0    1    4
    1
    0    0    0
    0    0    0    1    5
    1
    0    0    0
    0    0    0    1    6
    2
    0   -1   -1
    1   -1   -1
    .
    .
    .

seedname_qc.dat

OUTPUT. Written if \(\verb#transport#=\verb#.TRUE.#\). The first line gives the date and time at which the file was created. In the subsequent lines, the energy value in units of eV is written in the left column, and the quantum conductance in units of \(\frac{2e^2}{h}\) (\(\frac{e^2}{h}\) for a spin-polarized system) is written in the right column.

 ## written on 14Dec2007 at 11:30:17
   -3.000000       8.999999
   -2.990000       8.999999
   -2.980000       8.999999
   -2.970000       8.999999
    .
    .
    .

seedname_dos.dat

OUTPUT. Written if \(\verb#transport#=\verb#.TRUE.#\). The first line gives the date and time at which the file was created. In the subsequent lines, the energy value in units of eV is written in the left column, and the density of states in an arbitrary unit is written in the right column.

 ## written on 14Dec2007 at 11:30:17
   -3.000000       6.801199
   -2.990000       6.717692
   -2.980000       6.640828
   -2.970000       6.569910
    .
    .
    .

seedname_htB.dat

INPUT/OUTPUT. Read if \(\verb#transport_mode#=\verb#bulk#\) and \(\verb#tran_read_ht#=\verb#.TRUE.#\). Written if \(\verb#tran_write_ht#=\verb#.TRUE.#\). The first line gives the date and time at which the file was created. The second line gives tran_num_bb. The subsequent lines contain tran_num_bb\(\times\)tran_num_bb \(H_{mn}\) matrix, where the indices \(m\) and \(n\) span all tran_num_bb WFs located at \(0^{\mathrm{th}}\) principal layer. Then tran_num_bb is recorded again in the new line followed by \(H_{mn}\), where \(m^{\mathrm{th}}\) WF is at \(0^{\mathrm{th}}\) principal layer and \(n^{\mathrm{th}}\) at \(1^{\mathrm{st}}\) principal layer. The \(H_{mn}\) matrix is written in such a way that \(m\) is the fastest varying index.

 written on 14Dec2007 at 11:30:17
   150
   -1.737841   -2.941054    0.052673   -0.032926    0.010738   -0.009515
    0.011737   -0.016325    0.051863   -0.170897   -2.170467    0.202254
    .
    .
    .
   -0.057064   -0.571967   -0.691431    0.015155   -0.007859    0.000474
   -0.000107   -0.001141   -0.002126    0.019188   -0.686423  -10.379876
   150
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
    .
    .
    .
    0.000000    0.000000    0.000000    0.000000    0.000000   -0.001576
    0.000255   -0.000143   -0.001264    0.002278    0.000000    0.000000

seedname_htL.dat

INPUT. Read if \(\verb#transport_mode#=\verb#lcr#\) and \(\verb#tran_read_ht#=\verb#.TRUE.#\). The file must be written in the same way as in seedname_htB.dat. The first line can be any comment you want. The second line gives tran_num_ll. tran_num_ll in seedname_htL.dat must be equal to that in seedname.win. The code will stop otherwise.

 Created by a WANNIER user
   105
    0.316879    0.000000   -2.762434    0.048956    0.000000   -0.016639
    0.000000    0.000000    0.000000    0.000000    0.000000   -2.809405
    .
    .
    .
    0.000000    0.078188    0.000000    0.000000   -2.086453   -0.001535
    0.007878   -0.545485  -10.525435
   105
    0.000000    0.000000    0.000315   -0.000294    0.000000    0.000085
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000021
    .
    .
    .
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
    0.000000    0.000000    0.000000

seedname_htR.dat

INPUT. Read if \(\verb#transport_mode#=\verb#lcr#\) and \(\verb#tran_read_ht#=\verb#.TRUE.#\) and \(\verb#tran_use_same_lead#=\verb#.FALSE.#\). The file must be written in the same way as in seedname_htL.dat. tran_num_rr in seedname_htR.dat must be equal to that in seedname.win.

seedname_htC.dat

INPUT. Read if \(\verb#transport_mode#=\verb#lcr#\) and \(\verb#tran_read_ht#=\verb#.TRUE.#\). The first line can be any comment you want. The second line gives tran_num_cc. The subsequent lines contain tran_num_cc\(\times\)tran_num_cc \(H_{mn}\) matrix, where the indices \(m\) and \(n\) span all tran_num_cc WFs inside the central conductor region. tran_num_cc in seedname_htC.dat must be equal to that in seedname.win.

 Created by a WANNIER user
    99
  -10.499455   -0.541232    0.007684   -0.001624   -2.067078   -0.412188
    0.003217    0.076965    0.000522   -0.000414    0.000419   -2.122184
    .
    .
    .
   -0.003438    0.078545    0.024426    0.757343   -2.004899   -0.001632
    0.007807   -0.542983  -10.516896

seedname_htLC.dat

INPUT. Read if \(\verb#transport_mode#=\verb#lcr#\) and \(\verb#tran_read_ht#=\verb#.TRUE.#\). The first line can be any comment you want. The second line gives tran_num_ll and tran_num_lc in the given order. The subsequent lines contain tran_num_ll\(\times\)tran_num_lc \(H_{mn}\) matrix. The index \(m\) spans tran_num_ll WFs in the surface principal layer of semi-infinite left lead which is in contact with the conductor region. The index \(n\) spans tran_num_lc WFs in the conductor region which have a non-negligible interaction with the WFs in the semi-infinite left lead. Note that tran_num_lc can be different from tran_num_cc.

 Created by a WANNIER user
   105    99
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
    .
    .
    .
   -0.000003    0.000009    0.000290    0.000001   -0.000007   -0.000008
    0.000053   -0.000077   -0.000069

seedname_htCR.dat

INPUT. Read if \(\verb#transport_mode#=\verb#lcr#\) and \(\verb#tran_read_ht#=\verb#.TRUE.#\). The first line can be any comment you want. The second line gives tran_num_cr and tran_num_rr in the given order. The subsequent lines contain tran_num_cr\(\times\)tran_num_rr \(H_{mn}\) matrix. The index \(m\) spans tran_num_cr WFs in the conductor region which have a non-negligible interaction with the WFs in the semi-infinite right lead. The index \(n\) spans tran_num_rr WFs in the surface principal layer of semi-infinite right lead which is in contact with the conductor region. Note that tran_num_cr can be different from tran_num_cc.

 Created by a WANNIER user
    99   105
   -0.000180    0.000023    0.000133   -0.000001    0.000194    0.000008
   -0.000879   -0.000028    0.000672   -0.000257   -0.000102   -0.000029
    .
    .
    .
    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
    0.000000    0.000000    0.000000

seedname.unkg

INPUT. Read if \(\verb#transport_mode#=\verb#lcr#\) and \(\verb#tran_read_ht#=\verb#.FALSE.#\). The first line is the number of G-vectors at which the \(\tilde{u}_{m\mathbf{k}}(\mathbf{G})\) are subsequently printed. This number should always be 32 since 32 specific \(\tilde{u}_{m\mathbf{k}}\) are required. The following lines contain the following in this order: The band index \(m\), a counter on the number of G-vectors, the integer co-efficient of the G-vector components \(a,b,c\) (where \(\mathbf{G}=a\mathbf{b}_1+b\mathbf{b}_2+c\mathbf{b}_3\)), then the real and imaginary parts of the corresponding \(\tilde{u}_{m\mathbf{k}}(\mathbf{G})\) at the \(\Gamma\)-point. We note that the ordering in which the G-vectors and \(\tilde{u}_{m\mathbf{k}}(\mathbf{G})\) are printed is not important, but the specific G-vectors are critical. The following example displays for a single band, the complete set of \(\tilde{u}_{m\mathbf{k}}(\mathbf{G})\) that are required. Note the G-vectors (\(a,b,c\)) needed.

      32
    1    1    0    0    0   0.4023306   0.0000000
    1    2    0    0    1  -0.0000325   0.0000000
    1    3    0    1    0  -0.3043665   0.0000000
    1    4    1    0    0  -0.3043665   0.0000000
    1    5    2    0    0   0.1447143   0.0000000
    1    6    1   -1    0   0.2345179   0.0000000
    1    7    1    1    0   0.2345179   0.0000000
    1    8    1    0   -1   0.0000246   0.0000000
    1    9    1    0    1   0.0000246   0.0000000
    1   10    0    2    0   0.1447143   0.0000000
    1   11    0    1   -1   0.0000246   0.0000000
    1   12    0    1    1   0.0000246   0.0000000
    1   13    0    0    2   0.0000338   0.0000000
    1   14    3    0    0  -0.0482918   0.0000000
    1   15    2   -1    0  -0.1152414   0.0000000
    1   16    2    1    0  -0.1152414   0.0000000
    1   17    2    0   -1  -0.0000117   0.0000000
    1   18    2    0    1  -0.0000117   0.0000000
    1   19    1   -2    0  -0.1152414   0.0000000
    1   20    1    2    0  -0.1152414   0.0000000
    1   21    1   -1   -1  -0.0000190   0.0000000
    1   22    1   -1    1  -0.0000190   0.0000000
    1   23    1    1   -1  -0.0000190   0.0000000
    1   24    1    1    1  -0.0000190   0.0000000
    1   25    1    0   -2  -0.0000257   0.0000000
    1   26    1    0    2  -0.0000257   0.0000000
    1   27    0    3    0  -0.0482918   0.0000000
    1   28    0    2   -1  -0.0000117   0.0000000
    1   29    0    2    1  -0.0000117   0.0000000
    1   30    0    1   -2  -0.0000257   0.0000000
    1   31    0    1    2  -0.0000257   0.0000000
    1   32    0    0    3   0.0000187   0.0000000
    2    1    0    0    0  -0.0000461   0.0000000
    .
    .
    .

seedname_u.mat

OUTPUT. Written if \(\verb#write_u_matrices#=\verb#.TRUE.#\). The first line gives the date and time at which the file was created. The second line states the number of kpoints num_kpts and the number of wannier functions num_wann twice. The third line is empty. Then there are num_kpts blocks of data, each of which starts with a line containing the kpoint (in fractional coordinates of the reciprocal lattice vectors) followed by num_wann * num_wann lines containing the matrix elements (real and imaginary parts) of \(\mathbf{U}^{(\mathbf{k})}\). The matrix elements are in column-major order (ie, cycling over rows first and then columns). There is an empty line between each block of data.

 written on 15Sep2016 at 16:33:46 
           64           8           8

   0.0000000000  +0.0000000000  +0.0000000000
   0.4468355787  +0.1394579978
  -0.0966033667  +0.4003934902
  -0.0007748974  +0.0011788678
  -0.0041177339  +0.0093821027
   .
   .
   .

   0.1250000000   0.0000000000  +0.0000000000
   0.4694005589  +0.0364941808
  +0.2287801742  -0.1135511138
  -0.4776782452  -0.0511719121
  +0.0142081014  +0.0006203139
   .
   .
   .

seedname_u_dis.mat

OUTPUT. Written if \(\verb#write_u_matrices#=\verb#.TRUE.#\) and disentanglement is enabled. The first line gives the date and time at which the file was created. The second line states the number of kpoints num_kpts, the number of wannier functions num_bands and the number of num_bands. The third line is empty. Then there are num_kpts blocks of data, each of which starts with a line containing the kpoint (in fractional coordinates of the reciprocal lattice vectors) followed by num_wann * num_bands lines containing the matrix elements (real and imaginary parts) of \(\mathbf{U}^{\mathrm{dis}(\mathbf{k})}\). The matrix elements are in column-major order (ie, cycling over rows first and then columns). There is an empty line between each block of data.

 written on 15Sep2016 at 16:33:46 
           64           8          16

   0.0000000000  +0.0000000000  +0.0000000000
   1.0000000000  +0.0000000000
  +0.0000000000  +0.0000000000
  +0.0000000000  +0.0000000000
  +0.0000000000  +0.0000000000
   .
   .
   .

   0.1250000000   0.0000000000  +0.0000000000
   1.0000000000  +0.0000000000
  +0.0000000000  +0.0000000000
  +0.0000000000  +0.0000000000
  +0.0000000000  +0.0000000000
   .
   .
   .

  1. I. Souza, N. Marzari, and D. Vanderbilt. Maximally localized wannier functions for entangled energy bands. Phys. Rev. B, 65:035109, 2001. 

  2. Runzhi Wang, Emanuel A. Lazar, Hyowon Park, Andrew J. Millis, and Chris A. Marianetti. Selectively localized wannier functions. Physical Review B, 10 2014. doi:10.1103/PhysRevB.90.165125