Overview of the berry
module¶
The berry
module of postw90
is called by setting berry = true
and
choosing one or more of the available options for berry_task
. The
routines in the berry
module which compute the \(k\)-space Berry
curvature, orbital magnetization and spin Hall conductivity are also
called when kpath = true
and kpath_task = {curv,morb,shc}
, or when
kslice = true
and kslice_task = {curv,morb,shc}
.
Background: Berry connection and curvature¶
The Berry connection is defined in terms of the cell-periodic Bloch states \(\vert u_{n{\bf k}}\rangle=e^{-i{\bf k}\cdot{\bf r}}\vert \psi_{n{\bf k}}\rangle\) as \(\({\bf A}_n({\bf k})=\langle u_{n{\bf k}}\vert i\bm{\nabla}_{\bf k}\vert u_{n{\bf k}}\rangle,\)\) and the Berry curvature is the curl of the connection, \(\(\bm{\Omega}_n({\bf k})=\bm{\nabla}_{\bf k}\times {\bf A}_n({\bf k})= -{\rm Im} \langle \bm{\nabla}_{\bf k} u_{n{\bf k}}\vert \times \vert\bm{\nabla}_{\bf k} u_{n{\bf k}}\rangle.\)\) These two quantities play a central role in the description of several electronic properties of crystals 1. In the following we will work with a matrix generalization of the Berry connection, \(\({\bf A}_{nm}({\bf k})=\langle u_{n{\bf k}}\vert i\bm{\nabla}_{\bf k}\vert u_{m{\bf k}}\rangle={\bf A}_{mn}^*({\bf k}), \label{eq:berry-connection-matrix}\)\) and write the curvature as an antisymmetric tensor, \(\(\label{eq:curv} \Omega_{n,\alpha\beta}({\bf k}) =\epsilon_{\alpha\beta\gamma} \Omega_{n,\gamma}({\bf k})=-2{\rm Im}\langle \nabla_{k_\alpha} u_{n\bf k}\vert \nabla_{k_\beta} u_{n\bf k}\rangle.\)\)
berry_task=kubo
: optical conductivity and joint density of states¶
The Kubo-Greenwood formula for the optical conductivity of a crystal in the independent-particle approximation reads \(\(\sigma_{\alpha\beta}(\hbar\omega)=\frac{ie^2\hbar}{N_k\Omega_c} \sum_{\bf k}\sum_{n,m} \frac{f_{m{\bf k}}-f_{n{\bf k}}} {\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}} \frac{\langle\psi_{n{\bf k}}\vert v_\alpha\vert\psi_{m{\bf k}}\rangle \langle\psi_{m{\bf k}}\vert v_\beta\vert\psi_{n{\bf k}}\rangle} {\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}-(\hbar\omega+i\eta)}.\)\) Indices \(\alpha,\beta\) denote Cartesian directions, \(\Omega_c\) is the cell volume, \(N_k\) is the number of \(k\)-points used for sampling the Brillouin zone, and \(f_{n{\bf k}}=f(\varepsilon_{n{\bf k}})\) is the Fermi-Dirac distribution function. \(\hbar\omega\) is the optical frequency, and \(\eta>0\) is an adjustable smearing parameter with units of energy.
The off-diagonal velocity matrix elements can be expressed in terms of the connection matrix 2, \(\(\label{eq:velocity_mat} \langle\psi_{n{\bf k}}\vert {\bf v} \vert\psi_{m{\bf k}}\rangle= -\frac{i}{\hbar}(\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}) {\bf A}_{nm}({\bf k})\,\,\,\,\,\,\,\,(m\not= n).\)\) The conductivity becomes \(\(\begin{aligned} \label{eq:sig-bz} \sigma_{\alpha\beta}(\hbar\omega)&= \frac{1}{N_k}\sum_{\bf k}\sigma_{{\bf k},\alpha\beta}(\hbar\omega)\\ \label{eq:sig-k} \sigma_{{\bf k},\alpha\beta}(\hbar\omega)&=\frac{ie^2}{\hbar\Omega_c}\sum_{n,m} (f_{m{\bf k}}-f_{n{\bf k}}) \frac{\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}} {\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}-(\hbar\omega+i\eta)} A_{nm,\alpha}({\bf k})A_{mn,\beta}({\bf k}). \end{aligned}\)\)
Let us decompose it into Hermitian (dissipative) and anti-Hermitean
(reactive) parts. Note that \(\(\label{eq:lorentzian}
\overline{\delta}(\varepsilon)=\frac{1}{\pi}{\rm Im}
\left[\frac{1}{\varepsilon-i\eta}\right],\)\) where \(\overline{\delta}\)
denotes a "broadended" delta-function. Using this identity we find for
the Hermitean part \(\(\label{eq:sig-H}
\sigma_{{\bf k},\alpha\beta}^{\rm H}(\hbar\omega)=-\frac{\pi e^2}{\hbar\Omega_c}
\sum_{n,m}(f_{m{\bf k}}-f_{n{\bf k}})
(\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}})
A_{nm,\alpha}({\bf k})A_{mn,\beta}({\bf k})
\overline{\delta}(\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}-\hbar\omega).\)\)
Improved numerical accuracy can be achieved by replacing the Lorentzian
([eq:lorentzian]{reference-type="ref"
reference="eq:lorentzian"}) with a Gaussian, or other shapes. The
analytical form of \(\overline{\delta}(\varepsilon)\) is controlled by the
keyword [kubo_]smr_type
.
The anti-Hermitean part of Eq. ([eq:sig-k]{reference-type="ref" reference="eq:sig-k"}) is given by \(\(\label{eq:sig-AH} \sigma_{{\bf k},\alpha\beta}^{\rm AH}(\hbar\omega)=\frac{ie^2}{\hbar\Omega_c} \sum_{n,m}(f_{m{\bf k}}-f_{n{\bf k}}) {\rm Re}\left[ \frac{\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}} {\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}} -(\hbar\omega+i\eta)} \right] A_{nm,\alpha}({\bf k})A_{mn,\beta}({\bf k}).\)\) Finally the joint density of states is \(\(\label{eq:jdos} \rho_{cv}(\hbar\omega)=\frac{1}{N_k}\sum_{\bf k}\sum_{n,m} f_{n{\bf k}}(1-f_{m{\bf k}}) \overline{\delta}(\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}}-\hbar\omega).\)\)
Equations ([eq:lorentzian]{reference-type="ref"
reference="eq:lorentzian"}--[eq:jdos]{reference-type="ref"
reference="eq:jdos"}) contain the parameter \(\eta\), whose value can be
chosen using the keyword\
[kubo_]smr_fixed_en_width
. Better results can often be achieved by
adjusting the value of \(\eta\) for each pair of states, i.e.,
\(\eta\rightarrow \eta_{nm\bf k}\). This is done as follows (see
description of the keyword adpt_smr_fac
)
\(\(\eta_{nm{\bf k}}=\alpha\vert \bm{\nabla}_{\bf k}
(\varepsilon_{m{\bf k}}-\varepsilon_{n{\bf k}})\vert \Delta k.\)\)
The energy eigenvalues \(\varepsilon_{n\bf k}\), band velocities \(\bm{\nabla}_{\bf k}\varepsilon_{n{\bf k}}\), and off-diagonal Berry connection \({\bf A}_{nm}({\bf k})\) entering the previous four equations are evaluated over a \(k\)-point grid by Wannier interpolation, as described in Refs. 34. After averaging over the Brillouin zone, the Hermitean and anti-Hermitean parts of the conductivity are assembled into the symmetric and antisymmetric tensors \(\(\begin{aligned} \sigma^{\rm S}_{\alpha\beta}&= {\rm Re}\sigma^{\rm H}_{\alpha\beta}+i{\rm Im}\sigma^{\rm AH}_{\alpha\beta}\\ \sigma^{\rm A}_{\alpha\beta}&= {\rm Re}\sigma^{\rm AH}_{\alpha\beta}+i{\rm Im}\sigma^{\rm H}_{\alpha\beta}, \end{aligned}\)\) whose independent components are written as a function of frequency onto nine separate files.
berry_task=ahc
: anomalous Hall conductivity¶
The antisymmetric tensor \(\sigma^{\rm A}_{\alpha\beta}\) is odd under time reversal, and therefore vanishes in non-magnetic systems, while in ferromagnets with spin-orbit coupling it is generally nonzero. The imaginary part \({\rm Im}\sigma^{\rm H}_{\alpha\beta}\) describes magnetic circular dichroism, and vanishes as \(\omega\rightarrow 0\). The real part \({\rm Re}\sigma^{\rm AH}_{\alpha\beta}\) describes the anomalous Hall conductivity (AHC), and remains finite in the static limit.
The intrinsic dc AHC is obtained by setting \(\eta=0\) and \(\omega=0\) in Eq. ([eq:sig-AH]{reference-type="ref" reference="eq:sig-AH"}). The contribution from point \({\bf k}\) in the Brillouin zone is \(\(\sigma^{\rm AH}_{{\bf k},\alpha\beta}(0)=\frac{2e^2}{\hbar\Omega_c} \sum_{n,m}f_{n\bf k}(1-f_{m\bf k}) {\rm Im}\langle \nabla_{k_\alpha} u_{n\bf k}\vert u_{m\bf k}\rangle \langle u_{m\bf k}\vert\nabla_{k_\beta} u_{n\bf k}\rangle,\)\) where we replaced \(f_{n\bf k}-f_{m\bf k}\) with \(f_{n\bf k}(1-f_{m\bf k})-f_{m\bf k}(1-f_{n\bf k})\).
This expression is not the most convenient for ab initio calculations, as the sums run over the complete set of occupied and empty states. In practice the sum over empty states can be truncated, but a relatively large number should be retained to obtain accurate results. Using the resolution of the identity \(1=\sum_m \vert u_{m\bf k}\rangle \langle u_{m\bf k}\vert\) and noting that the term \(\sum_{n,m}f_{n\bf k}f_{m\bf k}(\ldots)\) vanishes identically, we arrive at the celebrated formula for the intrinsic AHC in terms of the Berry curvature, \(\(\begin{aligned} \label{eq:ahc} \sigma^{\rm AH}_{\alpha\beta}(0)&=\frac{e^2}{\hbar} \frac{1}{N_k\Omega_c}\sum_{\bf k}(-1)\Omega_{\alpha\beta}({\bf k}),\\ %\sum_n (-1)f_{n\bf k}\Omega_{n,\alpha\beta}({\bf k}). \label{eq:curv-occ} \Omega_{\alpha\beta}({\bf k})&=\sum_n f_{n\bf k}\Omega_{n,\alpha\beta}({\bf k}). \end{aligned}\)\) Note that only occupied states enter this expression. Once we have a set of Wannier functions spanning the valence bands (together with a few low-lying conduction bands, typically) Eq. ([eq:ahc]) can be evaluated by Wannier interpolation as described in Refs. 35, with no truncation involved.
berry_task=morb
: orbital magnetization¶
The ground-state orbital magnetization of a crystal is given by 16 \(\(\begin{aligned} \label{eq:morb} {\bf M}^{\rm orb}&=\frac{e}{\hbar} %\int_{\rm BZ}\frac{d{\bf k}}{(2\pi)^3} \frac{1}{N_k\Omega_c}\sum_{\bf k}{\bf M}^{\rm orb}({\bf k}),\\ \label{eq:morb-k} {\bf M}^{\rm orb}({\bf k})&= \sum_n\,\frac{1}{2}f_{n{\bf k}}\, {\rm Im}\,\langle \bm{\nabla}_{\bf k}u_{n{\bf k}}\vert \times \left(H_{\bf k}+\varepsilon_{n{\bf k}}-2\varepsilon_F\right) \vert \bm{\nabla}_{\bf k}u_{n{\bf k}}\rangle, \end{aligned}\)\) where \(\varepsilon_F\) is the Fermi energy. The Wannier-interpolation calculation is described in Ref. 5. Note that the definition of \({\bf M}^{\rm orb}({\bf k})\) used here differs by a factor of \(-1/2\) from the one in Eq. (97) and Fig. 2 of that work.
berry_task=shc
: spin Hall conductivity¶
The Kubo-Greenwood formula for the intrinsic spin Hall conductivity (SHC) of a crystal in the independent-particle approximation reads 789 \(\(\label{eq:kubo_shc} \sigma_{\alpha\beta}^{\text{spin}\gamma}(\omega) = \frac{\hbar}{\Omega_c N_k} \sum_{\bm{k}}\sum_{n} f_{n\bm{k}} \\ \sum_{m \neq n} \frac{2\operatorname{Im}[\langle n\bm{k}| \hat{j}_{\alpha}^{\gamma}|m\bm{k}\rangle \langle m\bm{k}| -e\hat{v}_{\beta}|n\bm{k}\rangle]} {(\epsilon_{n\bm{k}}-\epsilon_{m\bm{k}})^2-(\hbar\omega +i\eta)^2}.\)\) The spin current operator \(\hat{j}_{\alpha}^{\gamma}= \frac{1}{2}\{\hat{s}_{\gamma},\hat{v}_{\alpha}\}\) where the spin operator \(\hat{s}_{\gamma}=\frac{\hbar}{2}\hat{\sigma}_{\gamma}\). Indices \(\alpha,\beta\) denote Cartesian directions, \(\gamma\) denotes the direction of spin, commonly \(\alpha = x, \beta = y, \gamma = z\). \(\Omega_c\) is the cell volume, \(N_k\) is the number of \(k\)-points used for sampling the Brillouin zone, and \(f_{n{\bf k}}=f(\varepsilon_{n{\bf k}})\) is the Fermi-Dirac distribution function. \(\hbar\omega\) is the optical frequency, and \(\eta>0\) is an adjustable smearing parameter with unit of energy.
The velocity matrix element in the numerator is the same as
Eq. ([eq:velocity_mat]{reference-type="ref"
reference="eq:velocity_mat"}), so the only unknown quantity is the spin
current matrix
\(\langle n\bm{k}| \hat{j}_{\alpha}^{\gamma}|m\bm{k}\rangle\). We can use
Wannier interpolation technique to efficiently calculate this matrix,
and there are two derivation according to the degree of approximation. A
noteworthy difference is the way in which two ab-initio matrix
elements are evaluated,
\(\(\langle u_{n{\bf k}}\vert\sigma_\gamma H_{\bf k}\vert u_{m{\bf k}+{\bf b}}\rangle, \langle u_{n{\bf k}}\vert\sigma_\gamma \vert u_{m{\bf k}+{\bf b}}\rangle, \gamma = x, y, z\)\)
These are evaluated by pw2wannier90
using Ryoo's method. In contrast,
Qiao's method does not require pw2wannier90
, but it assumes an
approximation
\(1\approx\sum_{ l\in ab-initio{\rm \,bands}}|u_{l\bm{k}}\rangle \langle u_{l\bm{k}}|\).
You can choose which method to evaluate this value with shc_method
in
the input file. For a full derivation please refer to
Ref. 7 or Ref. 8.
The Eq. ([eq:kubo_shc]{reference-type="ref"
reference="eq:kubo_shc"}) can be further separated into band-projected
Berry curvature-like term \(\(\label{eq:kubo_shc_berry}
\Omega_{n,\alpha\beta}^{\text{spin}\gamma}(\bm{k}) = {\hbar}^2 \sum_{
m\ne n}\frac{-2\operatorname{Im}[\langle n\bm{k}|
\frac{1}{2}\{\hat{\sigma}_{\gamma},\hat{v}_{\alpha}\}|m\bm{k}\rangle
\langle m\bm{k}| \hat{v}_{\beta}|n\bm{k}\rangle]}
{(\epsilon_{n\bm{k}}-\epsilon_{m\bm{k}})^2-(\hbar\omega+i\eta)^2},\)\)
\(k\)-resolved term which sums over occupied bands
\(\(\label{eq:kubo_shc_berry_sum}
\Omega_{\alpha\beta}^{\text{spin}\gamma}(\bm{k}) = \sum_{n}
f_{n\bm{k}} \Omega_{n,\alpha\beta}^{\text{spin}\gamma}(\bm{k}),\)\) and
the SHC is \(\(\sigma_{\alpha\beta}^{\text{spin}\gamma}(\omega) =
-\frac{e^2}{\hbar}\frac{1}{\Omega_c N_k}\sum_{\bm{k}}
\Omega_{\alpha\beta}^{\text{spin}\gamma}(\bm{k}).\)\) The unit of the
\(\Omega_{n,\alpha\beta}^{\text{spin}\gamma}(\bm{k})\) is
\(\text{length}^{2}\) (Angstrom\(^2\) or Bohr\(^2\), depending on your choice
of berry_curv_unit
in the input file), and the unit of
\(\sigma_{\alpha\beta}^{\text{spin}\gamma}\) is \((\hbar/e)\)S/cm (the unit
is written in the header of the output file). The case of \(\omega=0\)
corresponds to direct current (dc) SHC while that of \(\omega\ne0\)
corresponds to alternating current (ac) SHC or frequency-dependent SHC.
Note in some papers
Eq. ([eq:kubo_shc_berry]{reference-type="ref"
reference="eq:kubo_shc_berry"}) is called as spin Berry curvature.
However, it was pointed out by Ref. 10 that this name is
misleading, so we use a somewhat awkward name "Berry curvature-like
term" to refer to
Eq. ([eq:kubo_shc_berry]{reference-type="ref"
reference="eq:kubo_shc_berry"}). The \(k\)-resolved term
Eq. ([eq:kubo_shc_berry_sum]{reference-type="ref"
reference="eq:kubo_shc_berry_sum"}) can be used to draw kslice
plot,
and the band-projected Berry curvature-like term
Eq. ([eq:kubo_shc_berry]{reference-type="ref"
reference="eq:kubo_shc_berry"}) can be used to color the kpath
plot.
Same as the case of optical conductivity, the parameter \(\eta\) contained
in the
Eq. ([eq:kubo_shc_berry]{reference-type="ref"
reference="eq:kubo_shc_berry"}) can be chosen using the keyword
[kubo_]smr_fixed_en_width
. Also, adaptive smearing can be employed by
the keyword [kubo_]adpt_smr
(see Examples 29 and 30 in the Tutorial).
Please cite the following paper 7 or 8 when publishing SHC results obtained using this method:
Junfeng Qiao, Jiaqi Zhou, Zhe Yuan, and Weisheng Zhao,\ Calculation of intrinsic spin Hall conductivity by Wannier interpolation,\ Phys. Rev. B. 98, 214402 (2018), DOI:10.1103/PhysRevB.98.214402.
or
Ji Hoon Ryoo, Cheol-hwan Park, and Ivo Souza,\ Computation of intrinsic spin Hall conductivities from first principles using maximally localized Wannier functions,\ Phys. Rev. B. 99, 235113 (2019), DOI:10.1103/PhysRevB.99.235113.
berry_task=sc
: shift current¶
The shift-current contribution to the second-order response is
characterized by a frequency-dependent third-rank tensor 11
\(\(\label{eq:shiftcurrent}
\begin{split}
\sigma^{abc}(0;\omega,-\omega)=&-\frac{i\pi e^3}{4\hbar^2 \Omega_c N_k}
\sum_{\bm{k}} \sum_{n,m}(f_{n\bm{k}}-f_{m\bm{k}})
\times
\left(r^b_{ mn}(\bm{k})r^{c;a}_{nm}(\bm{k}) + r^c_{mn}(\bm{k})r^{b;a}_{ nm}(\bm{k})\right)\\
&\times \left[\delta(\omega_{mn\bm{k}}-\omega)+\delta(\omega_{nm\bm{k}}-\omega)\right],
\end{split}\)\) where \(a,b,c\) are spatial indexes and
\(\omega_{mn\bm{k}}=(\epsilon_{n\bm{k}}-\epsilon_{m\bm{k}})/\hbar\). The
expression in
Eq. [eq:shiftcurrent]{reference-type="ref"
reference="eq:shiftcurrent"} involves the dipole matrix element
\(\(\label{eq:r}
r^a_{ nm}(\bm{k})=(1-\delta_{nm})A^a_{ nm}(\bm{k}),\)\) and its
generalized derivative \(\(\label{eq:gen-der}
r^{a;b}_{nm}(\bm{k})=\partial_{k_{b}} r^a_{nm}(\bm{k})
-i\left(A^b_{nn}(\bm{k})-A^b_{ mm}(\bm{k})\right)r^a_{ nm}(\bm{k}).\)\)
The first-principles evaluation of the above expression is technically
challenging due to the presence of an extra \(k\)-space derivative. The
implementation in wannier90
follows the scheme proposed in
Ref. 12, following the spirit of the
Wannier-interpolation method for calculating the AHC 3 by
reformulating \(k\cdot p\) perturbation theory within the subspace of
wannierized bands. This strategy inherits the practical advantages of
the sum-over-states approach, but without introducing the truncation
errors usually associated with this procedure 11.
As in the case of the optical conductivity, a broadened delta function
can be applied in
Eq. [eq:shiftcurrent]{reference-type="ref"
reference="eq:shiftcurrent"} by means of the parameter \(\eta\) (see
Eq. [eq:lorentzian]{reference-type="ref"
reference="eq:lorentzian"}) using the keyword
[kubo_]smr_fixed_en_width
, and adaptive smearing can be employed using
the keyword [kubo_]adpt_smr
.
Please cite Ref. 12 when publishing shift-current results using this method.
berry_task=kdotp
: \(k\cdot p\) coefficients¶
Consider a Hamiltonian \(\(\label{eq:H} H=H^{0}+H^{\prime}\)\) where the eigenvalues \(E_{n}\) and eigenfunctions \(\vert n\rangle\) of \(H^{0}\) are known, and \(H^{\prime}\) is a perturbation. In a nutshell, quasi-degenerate perturbation theory assumes that the set of eigenfunctions of \(H^0\) can be divided into subsets \(A\) and \(B\) that are weakly coupled by \(H^{\prime}\), and that we are only interested in subset \(A\). This theory asserts that a transformed Hamiltonian \(\tilde{H}\) exists within subspace \(A\) such that \(\(\label{eq:pert-exp} \tilde{H}=\tilde{H}^{0}+\tilde{H}^{1}+\tilde{H}^{2} + \cdots\)\) where \(\tilde{H}^{j}\) contain matrix elements of \(H^{\prime}\) to the \(j\)th power. According to Appendix B of Ref 13, the first three terms are \(\(\begin{aligned} \label{eq:pert-matelem0} & \tilde{H}^{0}_{mm'} = H^{0}_{mm'},\\ \label{eq:pert-matelem1} & \tilde{H}^{1}_{mm'} = H^{'}_{mm'},\\ \label{eq:pert-matelem2} & \tilde{H}^{2}_{mm'} = \dfrac{1}{2}\sum_{l}H^{'}_{ml}H^{'}_{lm'} \left( \dfrac{1}{E_{m}-E_{l}}+\dfrac{1}{E_{m'}-E_{l}} \right), \end{aligned}\)\) where \(m,m'\in A\) and \(l\in B\). The approximation \(\tilde{H}\sim \tilde{H}^{0}+\tilde{H}^{1}\) amounts to truncating \(H\) to the \(A\) subspace. By further including \(\tilde{H}^{2}\), the coupling to the \(B\) subspace is incorporated approximately, "renormalizing" the elements of the truncated matrix.
We adopt the notation described in Sec. III.B of Ref. 3. We shift the origin of \(k\) space to the point where the band edge (or some other band extremum of interest) is located, and Taylor expand around that point the Wannier-gauge Hamiltonian, \(\(\label{eq:HW-exp} H^{(W)}(\bm{k})=H^{(W)}(0) +\sum_{a}H_{a}^{(W)}(0)k_{a} +\dfrac{1}{2}\sum_{ab}H_{ab}^{(W)}(0)k_{a}k_{b} + \mathcal{O}(k^{3})\)\) where \(a,b=x,y,z\), and \(\(\begin{aligned} &H_{a}^{(W)}(0)=\left. \dfrac{\partial H^{(W)}(\bm{k})}{\partial k_{a}}\right\rvert_{\bm{k}=0}\\ &H_{ab}^{(W)}(0)=\left. \dfrac{\partial^{2} H^{(W)}(\bm{k})}{\partial k_{a}\partial k_{b}}\right\rvert_{\bm{k}=0} \end{aligned}\)\)
We now apply to \(H^{(W)}(\bm{k})\) a similarity transformation \(U(0)\) that diagonalizes \(H^{(W)}(0)\), and call the transformed Hamiltonian \(H(\bm{k})\), \(\(\label{eq:Hbar} H(\bm{k})=\overbrace{\overline{H}}^{H^{0}} + \overbrace{\sum_{a}\overline{H}_{a}k_{a} +\dfrac{1}{2}\sum_{ab}\overline{H}_{ab}k_{a}k_{b}}^{H^{\prime}} + \mathcal{O}(k^{3}),\)\) where we introduced the notation \(\(\overline{\mathcal{O}}=U^{\dagger}(0)\mathcal{O}^{(W)}(0)U(0),\)\) and applied it to \(\mathcal{O}=H,{H}_{a},{H}_{ab}\). We can now apply quasi-degenerate perturbation theory by choosing the diagonal matrix \(\overline{H}\) as our \(H^{0}\), and the remaining (nondiagonal) terms in Eq. [eq:Hbar] as \(H^{\prime}\). Collecting terms in Eq. ([eq:pert-exp]{reference-type="ref" reference="eq:pert-exp"}) up to second order in \(k\) we get \(\(\label{eq:Htilde} \tilde{H}_{mm'}(\bm{k}) = \overline{H}_{mm'} + \sum_{a} \left(\overline{H}_{a}\right)_{mm'}k_{a} + \dfrac{1}{2}\sum_{a,b}\left[ \left(\overline{H}_{ab}\right)_{mm'} + \left({T}_{ab}\right)_{mm'} \right]k_{a}k_{b}+ \mathcal{O}(k^{3}),\)\) where \(m,m'\in A\) and we have defined the virtual-transition matrix \(\(\label{eq:Tab} \left({T}_{ab}\right)_{mm'}=\sum_{l\in B} \left(\overline{H}_{a}\right)_{ml}\left(\overline{H}_{b}\right)_{lm'} \times \left( \dfrac{1}{E_{m}-E_{l}}+\dfrac{1}{E_{m'}-E_{l}} \right) = \left({T}_{ab}\right)_{m'm}^{*}.\)\) (The \(T_{ab}\) term in Eq. [eq:Htilde] gives an Hermitean contribution to \(\tilde{H}(\bm{k})\) only after summing over \(a\) and \(b\), whereas the other terms are Hermitean already before summing.)
The implementation in wannier90
follows the scheme proposed in
Ref. 14, and outputs \(\overline{H}_{mm'}\) in
seedname-kdotp_0.dat
, \(\left(\overline{H}_{a}\right)_{mm'}\) in
seedname-kdotp_1.dat
, and
\(\left[\left(\overline{H}_{ab}\right)_{mm'} + \left({T}_{ab}\right)_{mm'}\right]/2\)
in seedname-kdotp_2.dat
.
Please cite Ref. 14 when publishing \(k\cdot p\) results using this method.
Needed matrix elements¶
All the quantities entering the formulas for the optical conductivity
and AHC can be calculated by Wannier interpolation once the Hamiltonian
and position matrix elements \(\langle {\bf 0}n\vert H\vert
{\bf R}m\rangle\) and \(\langle {\bf 0}n\vert {\bf r}\vert {\bf
R}m\rangle\) are known 34. Those matrix
elements are readily available at the end of a standard MLWF calculation
with wannier90
. In particular, \(\langle {\bf
0}n\vert {\bf r}\vert {\bf R}m\rangle\) can be calculated by Fourier
transforming the overlap matrices in Eq. (1.7),
\(\(\langle u_{n{\bf k}}\vert u_{m{\bf k}+{\bf b}}\rangle.\)\) Further
Wannier matrix elements are needed for the orbital
magnetization 5. In order to calculate them using Fourier
transforms, one more piece of information must be taken from the
\(k\)-space ab-initio calculation, namely, the matrices
\(\(\langle u_{n{\bf k}+{\bf b}_1}\vert
H_{\bf k}\vert u_{m{\bf k}+{\bf b}_2}\rangle\)\) over the ab-initio
\(k\)-point mesh 5. These are evaluated by pw2wannier90
,
the interface routine between pwscf
and wannier90
, by adding to the
input file seedname.pw2wan
the line \(\({\tt
%\begin{quote}
write\_uHu = .true.
%\end{quote}
}\)\) The calculation of spin Hall conductivity needs the spin matrix
elements
\(\(\langle u_{n{\bf k}}\vert \sigma_\gamma \vert u_{m{\bf k}}\rangle,
\gamma = x, y, z\)\) from the ab-initio \(k\)-point mesh. These are also
evaluated by pw2wannier90
by adding to the input file
seedname.pw2wan
the line \(\({\tt
%\begin{quote}
write\_spn = .true.
%\end{quote}
}\)\) If one uses Ryoo's method to calculate spin Hall conductivity, the
further matrix elements are needed: \(\(\langle u_{n{\bf k}}\vert
\sigma_\gamma H_{\bf k}\vert u_{m{\bf k}+{\bf b}}\rangle, \langle u_{n{\bf k}}\vert
\sigma_\gamma \vert u_{m{\bf k}+{\bf b}}\rangle,
\gamma = x, y, z\)\) and these are evaluated by adding to the input file
seedname.pw2wan
the lines \(\({\tt
write\_sHu = .true.
}\)\) \(\({\tt
write\_sIu = .true.
}\)\)
-
Di Xiao, Ming-Che Chang, and Qian Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 82:1959–2007, Jul 2010. doi:10.1103/RevModPhys.82.1959. ↩↩
-
E. I. Blount. Solid State Physics, 13:305, 1962. ↩
-
X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt. Ab initio calculation of the anomalous hall conductivity by wannier interpolation. Phys. Rev. B, 74:195118, 2006. ↩↩↩↩↩
-
J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza. Spectral and fermi surface properties from wannier interpolation. Phys. Rev. B, 75:195121, 2007. ↩↩
-
M. G. Lopez, D. Vanderbilt, T. Thonhauser, and I. Souza. Phys. Rev. B, 85:014435, 2012. ↩↩↩↩
-
D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta. Orbital magnetization in crystalline solids: multi-band insulators, chern insulators, and metals. Phys. Rev. B, 74:024408, 2006. ↩
-
Junfeng Qiao, Jiaqi Zhou, Zhe Yuan, and Weisheng Zhao. Calculation of intrinsic spin hall conductivity by wannier interpolation. Phys. Rev. B, 98:214402, Dec 2018. URL: https://link.aps.org/doi/10.1103/PhysRevB.98.214402, doi:10.1103/PhysRevB.98.214402. ↩↩↩
-
Ji Hoon Ryoo, Cheol-Hwan Park, and Ivo Souza. Computation of intrinsic spin hall conductivities from first principles using maximally localized wannier functions. Phys. Rev. B, 99:235113, Jun 2019. URL: https://link.aps.org/doi/10.1103/PhysRevB.99.235113, doi:10.1103/PhysRevB.99.235113. ↩↩↩
-
G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa. Intrinsic spin hall effect in platinum: first-principles calculations. Phys. Rev. Lett., 100:096401, Mar 2008. URL: https://link.aps.org/doi/10.1103/PhysRevLett.100.096401, doi:10.1103/PhysRevLett.100.096401. ↩
-
M Gradhand, D V Fedorov, F Pientka, P Zahn, I Mertig, and B L Györffy. First-principle calculations of the berry curvature of bloch states for charge and spin transport of electrons. Journal of Physics: Condensed Matter, 24(21):213202, may 2012. URL: https://doi.org/10.1088%2F0953-8984%2F24%2F21%2F213202, doi:10.1088/0953-8984/24/21/213202. ↩
-
J. E. Sipe and A. I. Shkrebtii. Second-order optical response in semiconductors. Phys. Rev. B, 61:5337, 2000. doi:10.1103/PhysRevB.61.5337. ↩↩
-
Julen Ibañez-Azpiroz, Stepan S. Tsirkin, and Ivo Souza. Ab initio calculation of the shift photocurrent by wannier interpolation. Phys. Rev. B, 97:245143, Jun 2018. URL: https://link.aps.org/doi/10.1103/PhysRevB.97.245143, doi:10.1103/PhysRevB.97.245143. ↩↩
-
R. Winkler. Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer, 2003 edition edition, 2003. ISBN 978-3-540-01187-3. ↩
-
Julen Ibañez-Azpiroz, Fernando de Juan, and Ivo Souza. Quantitative analysis of two-band \(k\cdot p\) models describing the shift-current photoconductivity. ArXiv e-prints, 2019. URL: http://arxiv.org/abs/1910.06172, arXiv:1910.06172. ↩↩